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A nonlinear Galerkin method for the shallow-water equations is developed, based
on spectral transforms. The scheme is compared to a pseudo-spectral Galerkin
method. Our numerical results indicate that the nonlinear scheme has the potential
advantage of providing similar accuracy at a lower cost than the Galerkin method.
The nonlinear method has also less restrictive stability conditiofigoo1 Academic Press

1. INTRODUCTION

Nonlinear Galerkin methods were firstintroduced by Marion and Temam [14] for Navie
Stokes equations, from a theoretical point of view. The technique relies on the the
of approximate inertial manifolds [9, 12] (see also [2] for the shallow-water equation
and employs a decomposition of the solution into its small- and large-scale compone
Applications of the method have been developed, among others, for the Burgers eque
[5, 10] and Navier—Stokes equations [4, 7, 11].

In this article we propose a nonlinear Galerkin method for the shallow-water eqt
tions on two-dimensional domains with periodic boundary conditions (the equations
formulated as in the model proposed by Lorenz [13], on a f-plane). The shallow-wa
equations differ from the incompressible Navier—Stokes equations by the inclusion of
Coriolis force and by a different mass-conservation equation. In particular, a shallc
water flow is not divergence-free and the equations can not be projected on the spac
nondivergent velocities, as tipically done for the Navier—Stokes equations. In the sche
we propose, the velocity components and the geopotential height are expanded as
ble Fourier series, truncated at a certain resolution and the solution space is decomp
into low and high modes. Some nonlinear interaction terms are neglected and, thro
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NONLINEAR GALERKIN METHODS 593

projection of the equations onto the solution spaces, Galerkin equations for the low
high modes are derived. The implementation of the scheme is made efficient by the
of the spectral transform method [8, 15] to compute the projections. These are c
puted exactly, with no aliasing, by choosing auxiliary grids of appropriate sizes. T
time-discretization is based on a semi-implicit method, leading to CFL stability constrail
guided by the flow velocities (and not by the high phase speeds of the gravity-wave mc
of the shallow-water equations). The stability conditions are less restrictive than for
Galerkin method. These facts are shown in a linear stability analysis and verified in
numerical experiments.

A nonlinear Galerkin method for the shallow-water equations has been proposed in
There, two families of basis functions for the velocity field are employed, one compos
by purely rotational and one by purely divergent fields (these basis functions have tc
precomputed). Their approach also differs from ours in the time discretization (they emp
predictor corrector schemes) and in the numerical treatment of the equations, since
don't use spectral transforms (which we feel to be fundamental for efficiency).

The appropriate truncation number for a nonlinear Galerkin scheme depends on
spectral distribution of energy [4, 6]. In any case, if the high modes are resolved only
to a certain wave number, a corresponding Galerkin method using the same trunce
should provide results at least as good, since it uses more information than the nonli
scheme (in which some nonlinear interactions are neglected). The potential advantac
the nonlinear Galerkin scheme is to provide essentially the same accuracy at a red
computational cost. We compared the nonlinear method with a corresponding Gale
scheme and obtained numerical evidence of this advantage of the nonlinear method
feel the technique attractive for applications and we are investigating its use on glc
models on the sphere, aiming at numerical weather prediction.

The paper is structured as follows. It begins with the description of the equations
Section 2, followed by the presentation of the Galerkin method in Section 3. Section ¢
dedicated to the nonlinear Galerkin method, and in Section 5 we develop the linear stab
analysis of the Galerkin schemes. Numerical results are presented in Section 6 and the |
is closed with some conclusions.

2. THE SHALLOW-WATER EQUATIONS

We consider the shallow-water equations in nondimensional form as proposed by Lor
[13], on atwo-dimensional rectangular domain (the so called f-plane), with periodic bour
ary conditions. Diffusion and a mass-forcing term are explicitly included. The equatio
are given by

ou
E—f-uux—i-vuy—v—i-zx—voAu:O

0
a—:+uvx+vvy+u+zy—voAv=O (1)

d9z
i + Uz +vZy + (2o + 2)(Ux + vy) — kpAZ = F,
where the unknows are the two velocity componengndv and the geopotential height

z; the domain is2 = [0, 2] x [0, 27]. The terms—v andu in the first two equations
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correspond to the nondimensional form of the Coriolis forigeand«g are the diffusion
coefficients and- is the (time independent) mass-forcing term.

The shallow-water equations are distinguished from tBeifcompressible Navier—
Stokes equations by including effects of the Earth’s rotation in the Coriolis terms a
by having a different mass continuity equation. In particular, the flow is not divergenc
free and a Galerkin method for these equations cannot employ a projection on the sj
of nondivergent velocities. The shallow-water equations are often employed in models
ground-water, oceanic, and atmospheric flows.

3. APSEUDO-SPECTRAL GALERKIN METHOD FOR THE EQUATIONS

The shallow-water equations admit solutions evolving in different time scales. Th
present slower modes, the Rosshy waves, and the much faster evolving gravity wa
While one is normally interested in following the large-scale motion of the Rossby wave
the presence of the gravity waves, in spite of the fact that they usually carry little ener
poses severe stability restrictions for explicit schemes, because of their high-phase sy
Therefore, it is important to adopt some degree of implicitness in the numerical scher
for these equations, in order to attenuate the CFL stability constraints.

We propose here a semi-implicit pseudo-spectral Galerkin method for system (1). T
prognostic fieldsi, v, andz will be expanded as double Fourier series,

un(x, y, t) G (1)
oNOG YD) | = Y | Dat) [, (2)
ZN (X’ y, t) klely 2k| (t)

where
N N
In=<¢(kD:——=+1<k | < —5.
N {(,) 2+§,§2} 3)

The truncated expansion can be seen as the resultpifdjeetion R, from the spacéd,e, of
functions given by double Fourier series okt = span{e ¥ : (k,I) € In}. We first
consider a second-order semi-implicit time discretization of (1), where the terms giving r
to the fast gravity waves (such as the geopotential gradient) will be treated implicitly, wh
the nonlinear terms will be discretized explicitly by a leap-frog type scheme. The compl
time discretization is given by

u — Ato™ 4 At — pAtAU™ = Dt el

VM4 AU 4 AtZDT — voAtAV =1 4 rl 4)

24 oAt (Ut 0l — koAtAZM = 1St +rf
where a superscript refers to the variables at timig = nAt, and

rit=u"t 4 A" - At 4 pAtAUT?
roat =" — At — Atz 4 vpAtAY" (5)

rnt=2""1— Atzo(uy P+ 0)7t) + koAtAZM
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rih = —2At(u"u} +v"uy)
ron = —2At(u"vy 4 v"vy) (6)
rf = —2At((Z"uMx + (Z"W"y + F).
The Galerkin scheme is obtained through the projection of the time discretizated equat
onUy :
ultt — AtoR™ + Atz — voAtAUNT = Py (rit +rly)
v+ AtURT + ALZY — voAtAV = P (r8t +1g) 7
ZNT + oAt (U'E + V) — ko AtAZNT = Py (rgt+rg).
Assuming for the moment that the projections in the right-hand side of (7) have be

computed, this linear system can be decomposed for each spectral com@goheat|
as

~ 71 ~
1+voym  —At ikAt agt Flaki + Plhi
. . N
At 14+ voya  ilAt gt = Poaki + bk |, (8)
kAt ilzZoAt  1kopa | | 2 Faaid + b

where y = Atig and Ay = k? +12 is the corresponding eigenvalue of minus the
Laplacian.
The system (8) can be written as a system (@}, o5") (depending on thég™
variable)
(1+voma) — —At o
At (14 vora) oprt|

an-1 | zn A gsntl
Flak + b — IKAtZ, ]
an—1 &n H sn+1
Foaki + Fapi — i1 AtZ,

whose solution is given by

[0&”1 _ 1 [Sua — kAL + voya) +|A2t)2{<]|+11 )
o0t | B | S+ i(KAZ — 1AL + oy 2 |
where
i=+/-1
B = (L+ voya)? + A%
Sk = (L4 voy) (Flawi + o) + At(Faaiq + o) (10)

§2,k| = —At (f:?a_’i] + f:?b,k|) + (1 + VOVkI)(fS;I%I + fgb,ld)’

The combination of the two equations in (9) (equivalent to building the divergence of t
new velocity field) provides the expression

i(KSLk +182) + AL+ voya) aZg™)

o , (11)

(ke 1) =
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which when employed in the third equation of (8) leads to

s 1/ . (oAt .
ZE|+1 = aTd <I’§a,&| + r:?b,k| - |Tk|(ksl,k| + Isz,k|)> (12)

with

o =1+

ZoAt
’ a4 VoYki) + KoYki- (13)

ki

Altogether, we solve (8) by first deriving the value ﬁf” from (12) and then using it
in (9).

For the solution of (7) it remains to explain how to compute the projections of the rigt
hand side. Since they involve the nonlinear terms (including products of the variables), t
cannot be computed directly from the spectral coefficients in a efficient way. Instead,
employ the so-called spectral transform method [8, 15], using an auxiliary grid

2r(r — 1 2r(s—1
\]N:{(Xr’ys):xr: (N )» Ys = (N )»

r,s:l,...,N}, (14)
where we can evaluate the function and derivative values involved in the right-hand s
of (7) (through Fourier transforms). On the grid, the products can be trivially formed al
added. In order to project the right-hand side of (7) ddtp a Fourier transform of the
grid values is employed, leading to the spectral coeffcients. However, the product of t
functions inUy (such asu anduy) lies in Uy, and if it is evaluated on the gridy and
transformed back to get the spectral representation, the high midedl (to 2N) will be
aliased with the lower modes. This spurious transfer of energy from high to low modes i
potential source of (honlinear) instability in the scheme. If we use theJggidnstead, we
get the correct coefficients of the product ternJigy, and therefore the correct projection
ontoUy. But for this purpose, it is sufficient to employ grildn,» where aliasing occurs
only in the frequency range froMd + 1 to 3N /2 and an alias free projection ortky will

be computed (see [1]). This is the smallest grid to guarantee an alias-free computation
will be chosen in efficient computations. In summary, a complete time step will consist
the computation of the right-hand side of (7) on giigl ,» amounting to Fourier transforms
of u, v, z and their gradients, in a total of 9 fields transformed. The products are th
computed on the grid, and the right-hand sides of (7) are transformed back. The systemnr
then be solved and the time step completed. The computational costs are dominated b
12 transforms per time step, on a grid of si2¢/2 x 3N /2. Therefore, the computational
costs will be of the ordef (27N?log,(3N/2)).

4. THE NONLINEAR GALERKIN METHOD

Nonlinear Galerkin methods are motivated by the theory of Approximate Inertial Mar
folds (e.g. [9, 14, 12]). In principle, they can be used for equations of the form

?j—li+AU+G(U)= f, (15)

whereA is a positive self-adjoint linear operator with compact inverse@ricludes the
nonlinearities. In our problenA is the (diagonal) diffusion operatdy, = (u, v, z) and the
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eigenfunctions ofA (which form a complete set) are the Fourier modes. Fgp defined
as the projection (oHye—the solution space) onto the space of low motgs, and

Qn = | — Pny2 (1 is the identity operator) Eq. (15) is equivalent to the following system
dp
gt TAPH PneG(p+a) = Pyt (16)
dqg
gt TAd+ QnG(p+a) = Quf, 17)

wherep = Py,2U andg = QnU. Neglectingg (the projection onto the high modes) leads
to the usual Galerkin scheme:

dp
at Ap+ Pnj2G(p) = P2 f. (18)
In the theory of inertial manifoldgy is also taken into account, being approximated a
a function of the low modeg = ®(p), such thatd(p) = A"X(Qn f — QnG(p) is an
approximate inertial solution of the equation for the high modes (17). The graphic of t
equatiomy = ®(p) is called the approximate inertial manifold. This diagnostic value of th
high modes is employed in the formulation of the nonlinear Galerkin scheme:

d

T+ AP+ PuG(p+ O (p) = Pypat. (19)
For a practical and efficient method, some simplifications are necessary. First, instea
defining Qn = | — Pny2 we need to restrict it to a projection onto a finite dimensiona

subspace. We tak®n = Py — Pny2. The second simplification we adopt is in the evalu-
ation of G(p + ®(p)) in which we will not consider the interaction between high modes
Introducing the notation

Uy =UL +Ux, (UL = Pyj2(u),uy = Qn(w)
UN =V +vH, (UL = Pnjp2(), vhn = Qn(v))
ZN =2 +2Zn, (2L = Pnjp2(2), 24 = Qn(2)

Fn = Fo+Fu,  (FL = Pnj2F, Fy = QnF),

(20)

we obtain the following systems, which define our nonlinear Galerkin method. We have

oup 0z,

—_— = — — YgAu_ =
ot v + X VoAUL = $§
3UL 3ZL
= u —— — VA = 21
ot + UL + ay VOAVL = (21)
07, oup v
— — + — | —koAz =
ot Zo< ax + 8y> KoAZL = S3

0ZH
—UH + —— — AUy =%
X

0z
up + 8—; — VoAVH = S5 (22)
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where the right-hand sides are given by

St = Pny2(=UL(UL +Un)x — UQUL x — v (UL + UR)y — UL y)

S = Pnyja(—UL(vL + vH)x — UHVL x — UL (UL + UH)y — VHUL y) (23)
83 = Pnj2(F — (ZL (UL +Un))x — (ZHUL)x — (ZL(vL + vH))y — (ZHVL)y)

S = QN(=ULUL x — v UL y)

(24)
S = Qn(—ULvLx —vLoLy)

S = Qn(F — (ZLup)x — (ZLv)y).

One could also keep the temporal derivatives in the equations for the high modes (22), u
it in prognostic form. We choose the diagnostic form (22).

This nonlinear scheme is expected to lead to a better precision than the correspon
Galerkin method oty 2, since it includes the nonlinear interactions with the diagnosti
values of the high modes. On the other hand, because of the definitiypas the projection
ontoUy, complementary t®y 2, the method should not be more precise than the Galerki
scheme otJy. The atractivity of the idea will be to achieve almost the same precision
the Galerkin scheme ddy, with lower computational costs.

The numerical discretization of the nonlinear Galerkin method will follow the same ling
of the Galerkin scheme. We employ a semi-implicit temporal discretization on a pseu
spectral method, applying spectral transforms to compute nonlinear products. The prc
tions on the high and low modes spaces will be computed exactly in an alias free sche

We have

Uttt — At 4 At - voAtAultt = S 4 2Ats M
v+ AU 4 AtZ — vpAtAVTE = ST 4 2Ats) M (25)
7+ oAt (Ul + o)) — koAtAZY = ST 4 2Ats)

n+1 n+1 n+1 n n,n n,n
—vi" 4 2 — AU =) = Qn(—uful , —vlul )
n+1 n+1 n+1 n n.n n..n
U+ 255 — oA = 5§ = Qn(=ulvl x — o] ) (26)

20U+ ) — koAZ ™ = § = Qu(F — (W), — (Z)y).

with superscripts referring to time instants. The linear terms atttimin the equation for
low modes are given by

St =ult o+ At — At + voAtAUTE
St =] — Atul Tt — Atz] ) + voAtAV ! (27)
St =21 - Atzp(ul L 4 ol ) + koAtAZ) T

The nonlinear terms are discretized as

ST = Pujp(=u (u] + U, - upul , —of (u] + Ul - ot )

N1 1 1 ! !
" = Pua(-ul (o + o), — Ul — ol (o + o) — ol y) (28)

" = PualF — (2 (] + ), — (@), — (200 + o), — (DY)
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The equations are transformed into equations for the spectral coefficients of low mo

((k,1) € Uny2),

14+ vopa  —At ikAt s S+ 2at8 ™t
At 14wy ilAL | = | St +2atge™ . (29)
ikzpAt  ilzgAt 14 kop 2 @;,1 + ZAtég‘;,?,“
and for the high modesgK, |) € Wy),
vor  —1 il VY Shxi
1 vora ik el = | & |- (30)
ilzg ikzo Kork 20 8y

Assuming the right-hand side of (30) to be known, it can be solved as system (8) leadin
the newvalues diy, vy, andzy. These high modes are used in the right-hand side of (29
which can then be solved as (8) for ea&hl{ € Uy,2. The evaluation of the right-hand
side of the systems for the low and high modes involves nonlinear terms. For this purp
we employ spectral transforms, choosing appropriate auxiliary grids to guarantee alias-
results and an efficient scheme.

We need to compute products of low modes with either low or high modes, and tf
project the results ontdy » or Wy . For functionsp, 6 in Uy > the productd lies inUy.
With anN x N grid, a two-dimensional FFT will provide the correct values of all spectre
coefficients ofpd, and therefore the two projectio2(¢6) and Qn(¢0) are obtained
alias free. Fow in Uy,2 andé in Wy the product lies ifJayn 2. With an N x N grid,
only the modes with wave number up &y2 will be obtained alias free. But that's all we
need to havéy »(¢6) computed correctly. Therefore, &hx N grid will be sufficient for
obtaining all the right-hand sides with no aliasing.

In summary, atime step of the method will proceed as follows, assuliflifig df . 2
for (k,I) € Injz and the values aff, uf ,, uf o, o', o o . 20, 2] 4, 2, onaN x N
grid to be known.

(a) Computation of high modes §t, ;:
(al) Computesy, s7, s on the grid and apply Fourier transforms to &g, & .,
(a2) Solve fora}™, o, 2 e Wy
(a3) Compute the values of ™, uliy, iy, ol vl ol Z Z%. b on
the N x N grid.
(b) Computation of the low modes &, 1:
(b1) Using the values computed in steg3) evaluates™™ ™ i = 1,2, 3 ontheN x
N grid and use FFTs to get the corresponding spectral coefficients of their projection ¢
UN/2.
(b2) Complete the right-hand side with the linear ter#fis’, i = 1, 2, 3 and solve
the equations foa**, 571, and2™* in Uy .
(b3) Generate the values of ™, ul, uls, o, o ol
theN x N grid, which shall be used in the following time step.

n+1

N+l nel
Z

.21, 70y, on

Altogether, 24 two-dimensional FFT's oN x N grids will be carried out, 12 when
computing the high modes and 12 for the low modes. The total computational work will be
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the order of (24N2log,(N?)). This work compares favorably to thig27N2 log, (3N?/2))
of the linear Galerkin method (ddy), which needed al8/2 x 3N /2 grid for alias-free
results.

We also consider the possibility of freezing the high modes coefficients for several tir
steps. In this case, the total computational cost consists essentially of the costs for the
modes equation, being reduced almost by a factor of two.

5. LINEAR STABILITY ANALYSIS

We present a linear stability analysis for the pseudo-spectral linear Galerkin mett
described in Section 2. The discrete equations are given by

Pu((VD - VIVY) +k
n+1 7n+1 7n—1
z V V
+v< JZFN )—VoA( N er N >=0 (31)

AN+l n-1 \7n+1+\7n—1 . n+1_i_Z
%‘FZOV' % +PN(V~<ZR‘V?\I))—KOA % = Fn,

with \7N = (un, vn) € Uy x Uy andzy € Uy.
Linearizing system (31) around a state with constant veldgitgads to

VRJH _ \7&71 . ~ Loyt + yhn-t
N TN U.wv)vn" Kx —N_T "N
T (U-WVY) +kx 5

N+l 7n+1 sn—1

z \ \Y
+V (%) — oA (%) =0 (32)

Zn-+—1 Zn—l \'/'n+l \7n—l . Zn-&-l Zn—l
NZTJFZOV. % + 0. V2 — koA % — Ry

We build the scalar product of the first equation in (32) vziitf/?fl + \7?(1) and add it
to the scalar product of the second equation waffi + z, ). This, after simplifying the
terms originating from the geopotential and of the divergence, in presence of the peric
boundary conditions, leads to the expression

ZO|Vn+1‘ + |Zn+1‘ +ZOU At”vn+1+vn 1H +KOAtHZn+1+Z?\171H2
= 2|V + |2 Y7 - 220At (0 - WV, VL 4 VY
—2At(U0 - V2, 4+ 2 + 28y, 2+ 2,

where we hav®/ = (u, v), { = [ uv, V2= U+ vl [u? = (u,u), V2= ul? +
vl [1G]I% = Jux]? + |uy I2
We addzo|V 12+ |z}, |2 to both sides of last equation, in order to get

G™! 4 ZovoAtHV”H + VIG 1H + KoAtHZ”H + ZRleZ

=G"+ NLT + 2At(Fy, 2™ + 20 H) (33)
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where

6" = 2l + 2o VY + 4+ [ 34)

NLT = —2zAt(U . VT, Vi + Vi) —2at(U . vZ, 2 + 2. (35)

For estimating the term with the mass forcing, we first observe that the integration of (:
on the whole domain leads fgzy™* — zy ' = 2At [, Fn. This provides a limitation of
the constant part of the solution (denotediﬂy of the type

|| < CnAt|Fyl,

whereC is a positive constant. We now sptfy = Zy, + Z),, whereZy has zero mean value.
We then have

20t (Fn, 2 + 20 ) = 28t ((Fn, 3+ 20 + (P, 2 + 230 H))
<2At|FN|(|Zn+1+Z?\I 1’+|—n+1 —1|)
< 2At|Fn|(2CnAt Py | + Co| |2 + 24 7H)

;KOAt||z”+1-|-zN L2 +2At(c ~|—2CnAt>|FN| (36)

In the last estimates we have used a Poadaequality C; is a positive constant) and
the algebraic inequalityab < a?/4 + b?). We also observe, using the periodic boundary
conditions, that

—2zoAt{U . YV, Vi) = 2z0At(U . VV72 V).
Similarly, —2At(U . vz}, ZvY) = 2At(U . vz, 7). Substituting in (35) we have

NLT = —2zAt(U . VV, Vi) — 2At(0 . v}, 24)
+220At(0 . VL V) + 2A1(0 . vzt 2)
— Hn+l _ Hn’

with

HM = —270At(U . AVRL V) — 2At(U . AZ L ).
Using the last expressions in (33) we obtain

Gt < GITL 4 Zguoat ||V + VY7 + K oAt|| 2™ + 207
j j+1 ' ct 2
<G!'+H!"™ —H! +2At| —= 4+ 2C,At | |FnI°. (37)
Ko

Adding up forj from 1 ton results in

C2
G <G+ H™MI_HI 4+ 2(/(—; + 2CnAt>nAt|FN|2. (38)
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We can now limit
IHT] < 220At10 | [V Y| VA + 2840 o |27 |24
< 220vV2N AU o[V V] + 2vV2N AL U | |27 |2
< V2N AU oo (20| VG
< (V2N At|U|)G!.

2 =2 j—1)2 P2
|+ 2o Vil + [z + 2]
It then follows from (38) that for any’ > O fixed andnAt < T:
J n+1 T 1 C:Iz. 2
(1= V2NAU|)G™? < (1 + V2NALU|)Gr + 2( =X +2CT | T|Fn /%
Ko

So, if At < we have

1
V2N|U |

3 —1~2
G < 1+ szAt|Lf|OQG1 2(ky 'C2 +2CJ')T a2 (39)
1— V2NAt|U | 1— V2NAt|U |

We have therefore proved:

PROPOSITION If At obeys the CFL conditiorAt<ﬁN1‘U‘ -, then @' <C,G'+

CsT|Fn|?, where G and G are constants obtained from the inequali89), T a fixed
timeg and G' is given by(34). It follows that the scheme is linearly stable.

Observation. The same proof above applies for the nonlinear galerkin method (wi
projectionsPy,> andQy). It will lead to the stability conditiomt < ﬁ%l\U|w’ indicating
that the CFL condition for the nonlinear galerkin method is given by the equation for tl
low modes. This agrees with the fact that the equation for the high modes is employed
diagnostic equation.

An analysis in which the linearization is done around a spatially variable basic state «
the interaction between low and high modes is present in the resulting system is prese
in [2].

6. NUMERICAL RESULTS

We present in this section numerical results obtained with the nonlinear Galerkin meth
which are compared with results from the pseudo-spectral Galerkin method describe
section (4).

We first consider a smooth solution with initial state given by

u= 10007s siny

1
v = 100 siny (40)
z= 1000z, cosy.

This initial state is nearly stationary for a forcing tefm= cosy/100. We adopt the values
Zo = 8, vp = ko = 1/48 in the nondimensional model and integrate the equations with
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forcing term of the order of 110. (Our choice of parameters correspond, on a domai
with typical lenghtL = 1080 Km, to heights of the order of 8 km and Coriolis factor
f~1=10800s.)

We first tested the method in different situations, also using the high-mode equation
prognostic form. This brings no advantage over the diagnostic form (22) described in
text. We have experimented with the possibility of freezing the high modes for several ti
steps, with different test cases, resolutions, and time steps. The number of steps the
modes can be keptunchanged (without significantloss in precision) varied from around 1
more than 50. The results indicate that the high modes don’t need to be updated as frequ
as the low modes (this is in accordance with results of [4] for the Navier—Stokes equatior

In Fig. 1 we display results obtained with the nonlinear method (NLG) (with the hig
modes frozen for every 30 time steps) and with the pseudo-spectral Galerkin (GL) met
at several resolutions. In these tests, a small time st&p=9 min.) was employed, in
order to keep the time truncation errors very small. In this way we can observe better
differences in spatial resolution of both methods. The results, after 200 time steps, show
the nonlinear method at a resolutidbh has an accuracy close to that of the correspondin
Galerkin method at same truncation and better than the accuracy of the Galerkin methc
resolutionN /2, as expected. The lower cost of the nonlinear Galerkin method (compat
to the Galerkin method at same truncation) makes the scheme interesting. In Fig. 1
geopotential field is shown fdd = 8, 16, and 32. In each graphic, we compare the lineg
Galerkin method (GL) at truncatioN either to the same method at truncatidii2 or to
the nonlinear method (NLG) at truncatidh

The relative computational efficiency of the schemes can be seen in Fig. R. ffom
16 to 128, we display the CPU times for the whole integration (200 time steps) with t
Linear Galerkin (LG), nonlinear Galerkin (NLG), and nonlinear Galerkin with high mode
frozen (NLGF). We observe that the nonlinear method (NLG) is faster than LG (for the sa
resolution) by around 12%, and when the high modes are frozen it is almost two times fa:

We also consider less smooth solutions by taking an extra forcing term of the fo
F1(X, y) = & ()8 (y) where

sl +cosrs+m)), [s|<m(1+r)
T 0, otherwise

(see Fig. 3). This forcing approximates a local (dirac type) mass source at the cente
the domain. The results for the geopotential after 200 time steps (departing from the s
initial state as before) are displayed in Fig. 4. We present results for the linear Galel
method and for the nonlinear method with frozen high modes for every 30 stepb a8,

16, 32, and 64. We can observe the same qualitative behavior of the previous example
in this case, in which at least 32 modes are necessary to provide a good resolution o
solution. Again, the nonlinear method at truncatidrieads to an intermediate accuracy,
between the ones of the Galerkin method at resoluthdf@ andN, closer to the latter (at
lower cost).

We carried out several stability tests, confirming the CFL-type condition for stabili
(dependent on the maximal flow velocities). The numerical experiments also confirn
that the nonlinear method at truncatibnis as stable as the Galerkin method at resolutiol
N/2 (being able to employ time steps two times larger than the Galerkin method at trunca
N). This is a potential advantage of the nonlinear method.
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FIG. 1. Display of the geopotential field after 200 time steps for several resolutions. In the left (plots a, c, a
e) we compare the results of the (linear) Galerkin method with truncalloss8, 16, and 32 to the results of the
same method at half resolutioN (= 4, 8, and 16 ) respectively. In the right (plots b, d, and f) the Galerkin (GL)
method (with truncation® = 8, 16, and 32) is compared to the non-linear method (NLG) at same resolutic
(truncationsN = 8, 16, and 32, respectively).
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7. AFEW REMARKS ON THE APPLICABILITY OF THE METHOD

The use of the shallow-water equations ditplane with periodic conditions and constant
coefficients leads to some simplifications, which are not necessarily presentin more real
applications. We would like, therefore, to make some remarks pointing out how to han
more general situations. First, if the Coriolis factor is variable (as in the casg-giane
or global models), its implicit treatment as done in this paper would not be feasible. T
Coriolis terms should then be discretized explicitly (at tithe The productsfu and fv
would be evaluated on the grid and contribute to the right-hand sides of the equatic
This modification has no significant impact either on the accuracy or on the stability of 1
method, and could have been used in the present model.

Fl(xy) ——

FIG. 3. Shallow water equations: forcirfg.
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FIG. 4. Display of the geopotential field after 200 time steps with a local mass source. In the left (plots a.
and e) we compare the results of the (linear) Galerkin method with truncatieas 6, 32, and 64 to the results
of the same method at half resolutidd & 8, 16, and 32), respectively. In the right (plots b, d, and f) the Galerkin
(LG) method (with truncationsl = 16, 32, and 64 ) is compared to the nonlinear method (NLG) at same resolutic
(truncationsN = 16, 32, and 64, respectively).
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The presence of variable horizontal diffusion coefficients would also prevent the impli
treatment of the Laplacian terms, in a spectral framework as employed in this paper.
solution for this, is to discretize the diffusion terms explicitly (at titfie*, as in an Eulerian
method with time step&t). This change, however, will change the stability properties of th
schemes (both of the Galerkin and of the nonlinear Galerkin method). An explicit treatm
of diffusion is usual in oceanic applications of shallow water flow (see e.g. [3]) and t
stability conditions seem to be acceptable from a pratical point of view. In global weatt
forecasting models, however, itis acommon practice to employ constant horizontal diffus
coefficients (see e.g. [16]), and in this case, the related terms can be treated implicitl
described here. Another aspectis the possible presence of avariable orography, instead
flat bottom considered in this paper. The extra terms, involving the gradient of the orograg
could be evaluated explicitly (at tim&') on the grid, with the linear part of the mass
divergence term still handled implicitly as in the present model. With these modificatiol
the scheme should present similar numerical properties, concerning accuracy and stat

The application of the nonlinear Galerkin method to a global spectral shallow-wa
model, involving the ideas discussed in this section, is a subject of our ongoing resear

8. CONCLUSIONS

We present a nonlinear (pseudo-spectral) Galerkin method for the shallow-water ec
tions on bidimensional periodic domains, and compare it to a pseudo-spectral Gale
method. Both schemes employ a semi-implicit second-order accurate time discretizat
and have a CFL stability restriction governed by the flow velocities, and not by the f:
gravity wave modes of the shallow-water equations. This stability condition is more |
strictive (by a factor two) for the Galerkin method than for the nonlinear scheme. This f:
is verified numerically and supported by a linear stability analysis, in which the stabili
criteria are derived. Both schemes are derived to be free of aliasing resulting from nonlir
interaction. With the linear Galerkin method, employing double Fourier expansions w
N modes in each direction, this is achieved at the cost of using /23 3N /2 auxiliary
grid in the spectral transforms. In the nonlinear Galerkin method we developé¢d &l
grid is sufficient for alias-free computations. In this way, every time step of the nonline
Galerkin method is faster than the corresponding step of the linear Galerkin method at s
resolution. In the nonlinear method we can also freeze the high modes for some time st
therefore reducing the computational work by a significant amount. Our numerical res|
indicate that the nonlinear Galerkin method, even with the high modes frozen for me
steps, still achieves an accuracy comparable to that of the linear scheme at same reso
(ataconsiderable lower cost). This fact makes the approach potentially interesting for af
cations. We are currently investigating its use on spectral schemes for global shallow-w
models, with atmospheric applications in view.
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